US009299121B2

a2z United States Patent (10) Patent No.: US 9,299,121 B2
Hartog et al. (45) Date of Patent: Mar. 29, 2016
(54) PREEMPTIVE CONTEXT SWITCHING GO6T 1/20 (2006.01)
GOG6F 9/48 (2006.01)
(75) Inventors: Robert Scott Hartog, Windemere, FL. (52) U.S.CL
823 %a‘;ghﬁaﬁﬁogiﬁgdﬁ? CPC oo GO6T 1/20 (2013.01); GOGF 9/4812
(US)T Kevin McGrath ,Los GatO,s CA (2013.01); GOGF 9/4881 (2013.01)
’ . ’ .’ 58) Field of Classification Search
US): Sebastien Nussbaum, Lexingt (
1(\/[ A)gUg).*‘;;ii‘an Tayasens, Sunnyvale USPC ........ 345/501-503, 522; 718/100-103, 107,
CA (US); Rex McCrary, Oviedo, FLL L. . 718/108
(US); Mark Leather, Los Gatos, CA See application file for complete search history.
(US); Philip J. Rogers, Pepperell, MA
Eggg, Thomas R. Woller, Austin, TX (56) References Cited
U.S. PATENT DOCUMENTS
(73) Assignee: Advanced Micro Devices, Inc., )
Sunnyvale, CA (US) 7,623,134 BL* 11/2009 Danilak ...... .. 345/568
2007/0136730 A1* 62007 Wiltetal. ... . 718/102
. . . . . 2009/0160867 Al* 6/2009 Grossman ....... ... 345/522
(*) Notice: SuthetCt, to any (gsglalmeéz thte Iiermgfﬂ;; 2010/0026682 AL* 22010 Plowman efal. . 345/419
patent is extended or adjusted under i )
U.S.C. 154(b) by 368 days. * cited by examiner
(21) Appl. No.: 13/289,714 Primary Examiner — Jacinta M Crawford
(22) Filed: Nov. 4, 2011 (74) Attorney, Agent, or Firm — Volpe and Koenig, P.C.
(65) Prior Publication Data (57) ABSTRACT
US 2012/0194524 A1 Aug. 2,2012
e < Methods, systems, and computer readable media embodi-
Related U.S. Application Data ments are di.sclosed for preemptive conte?xt-swit.ching of pro-
o o cesses running on a accelerated processing device. Embodi-
(60)  Provisional application No. 61/423,498, filed on Dec. ments include, detecting by an accelerated processing device
15, 2010. a memory exception, and preempting a process from running
(51) Int.Cl on the accelerated processing device based upon the detected
nt. L exception.
GO6F 15/16 (2006.01) P
GO6F 15/00 (2006.01)
GO6T 1/00 (2006.01) 22 Claims, 6 Drawing Sheets

12

initiating APD-based context <
switch determination

i
1

kit

Accessing statistics related to |-~
memory exceptions

¥

Determining stall or context

swiich based on heuristically
determined metric

v

Initiating preemptive context
switch




U.S. Patent Mar. 29, 2016 Sheet 1 of 6 US 9,299,121 B2

111
Applications
102
. 108
CPU b o~ 08
Operating!  Memory R
System | Manager Sﬁyﬁm
-t emory
Y S
" Command | 125
- 1 : 4 _',/
.ﬂ}x 8 ,.,J;E 6 buffers |
' : 158
140 156
LB IOMMU £ — M oa
Page e
Event maintained
| Memaory Queye Exception
120 128 148 1501 iControfler Statistics
T S —— R
i 1 g
157
Freemption WS Interrupt Runlist _';agle I~
Logic ‘Generator; i{ Controller 100 avle
3 et b g o 152
; i i { ; L f\J
[MLZG iﬂjfz 4 148 Active
Dispatch | {Command 5 g List 154
Controliers!  MProcessors W1i__,:n2 ;
(1) (1 i | Interrupt
; :} Shader Core Controller Process
f , 5 : Control
Dispatch Command Blocks
Controllersi—{-{Processors H B ,
(n) (n) - Kernel | 110
4 Mode
132 | “ Driver
it f s -
E;(ception . 135 32
Thread/ TV S
isti - SWS
Statistics wavelront
X
T 130 e 151
104 - » TS T
Accelerated A Parsistent
Processing Memory Mamory
Device (AFPD) - FIG. 1A




US 9,299,121 B2

Sheet 2 of 6

Mar. 29, 2016

U.S. Patent

AICHLISIA
154

al ‘9Old
||||||||||||||||||||||||||||||||||||||||||||||||||||||| _
| ARSI
2zl augadig | S
ayndwios e o
(——- - - - ~ |
uinduy | spzl il
oty I9|IONU0D) : uindul e “
Rk o yojedsig T dAn o
VASH | |
BY2eD 21 (e01n0say paseys) L ndu; _ avzL |
! 4

As 8100 JopeyS - JOJ[OIUOD) |t banely e |
yojedsia L TT @0
oL L
| ! )
) _ |
g — — | | |
| | | |
] [ _ | !

) . !
o1 w [ % - fm“ b_. " oinduj | I RN
P |1 rSETe [y elonuod “ Lo
nd | IO RN =T ojeds . R
QNS |, OO SN SO Pk b i d | o
,&1 — aivitw_z gy 0G| | i !
ZoL ] 9981 gene 2 $9} | !
38 Vel LEA M_ ; L

sunedid sondern N i | _ ,
|
y




U.S. Patent Mar. 29, 2016 Sheet 3 of 6 US 9,299,121 B2

G
1

Running process on AFD

N
(@]
[e]

202
%

kil

204

Requesting of data by process |

¥

208
Detecting a page fault/

memory exception

¥

Notifying the OS of the o
memery exception

¥

APD receives IOMMU fault
Handling notification

ki

Updating APD memory o
exceptior% statistics

v
216 214
P &~ f\/

No Context

et Stal] nﬁ“ﬁm“"-“WWNWWXWHCh?
I/'

{Yos
e

218

FPreampling process from APD

¥

. 220
Running a second process on .7

APD




U.S. Patent Mar. 29, 2016 Sheet 4 of 6 US 9,299,121 B2

208
f‘/f\\“\
{ Start
‘\\\_» _'_,./'/
302
Receiving reguest for data at "
HOMMU
¥
304
TLR lookup T
¥
""" 3}96
Notifying APD of page fault |
¥ — 308
Requesting fault handling for
page fault

¥



U.S. Patent Mar. 29, 2016 Sheet 5 of 6

P
<

Generating interrupt

¥

Queuing events in page Taull
gueue

¥

Allocating page and updating
page tables

¥

of page allocation

Notifying APD/IOMMU by OS j-*

I

402

4pa

406

408

L4
¥

US 9,299,121 B2

20



U.S. Patent Mar. 29, 2016 Sheet 6 of 6

T
- ~.

{ start
N

switch determination

¥

502

PO

memory exceptions

Accessing statistics related to |-~

,,,,, ¥

504

"
¥

Determining stall or context
switch based on heuristically
determined metric

506

23

Initiating preemptive context
switch

508

o

US 9,299,121 B2

12



US 9,299,121 B2

1
PREEMPTIVE CONTEXT SWITCHING

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. provisional
application No. 61/423,498, filed on Dec. 15, 2010, which is
hereby incorporated by reference in its entirety.

BACKGROUND

1. Field of the Invention

The present invention is generally directed to computing
systems. More particularly, the present invention is directed
to context-switching of processes executed within a comput-
ing system.

2. Background Art

The desire to use a graphics processing unit (GPU) for
general computation has become much more pronounced
recently due to the GPU’s exemplary performance per unit
power and/or cost. The computational capabilities for GPUs,
generally, have grown at a rate exceeding that of the corre-
sponding central processing unit (CPU) platforms. This
growth, coupled with the explosion of the mobile computing
market (e.g., notebooks, mobile smart phones, tablets, etc.)
and its necessary supporting server/enterprise systems, has
been used to provide a specified quality of desired user expe-
rience. Consequently, the combined use of CPUs and GPUs
for executing workloads with data parallel content is becom-
ing a volume technology.

However, GPUs have traditionally operated in a con-
strained programming environment, available primarily for
the acceleration of graphics. These constraints arose from the
fact that GPUs did not have as rich a programming ecosystem
as CPUs. Their use, therefore, has been mostly limited to two
dimensional (2D) and three dimensional (3D) graphics and a
few leading edge multimedia applications, which are already
accustomed to dealing with graphics and video application
programming interfaces (APIs).

With the advent of multi-vendor supported OpenCL® and
DirectCompute®, standard APIs and supporting tools, the
limitations of the GPUs in traditional applications has been
extended beyond traditional graphics. Although OpenCL and
DirectCompute are a promising start, there are many hurdles
remaining to creating an environment and ecosystem that
allows the combination of a CPU and a GPU to be used as
fluidly as the CPU for most programming tasks.

Existing computing systems often include multiple pro-
cessing devices. For example, some computing systems
include both a CPU and a GPU on separate chips (e.g., the
CPU might be located on a motherboard and the GPU might
be located on a graphics card) or in a single chip package.
Both of these arrangements, however, still include significant
challenges associated with (i) separate memory systems, (ii)
efficient scheduling, (iii) providing quality of service (QoS)
guarantees between processes, (iv) programming model, and
(v) compiling to multiple target instruction set architectures
(ISAs)—all while minimizing power consumption.

For example, the discrete chip arrangement forces system
and software architects to utilize chip to chip interfaces for
each processor to access memory. While these external inter-
faces (e.g., chip to chip) negatively affect memory latency and
power consumption for cooperating heterogeneous proces-
sors, the separate memory systems (i.e., separate address
spaces) and driver managed shared memory create overhead
that becomes unacceptable for fine grain offload.

10

15

20

25

30

35

40

45

50

55

60

65

2

In another example, since processes cannot be efficiently
identified and/or preempted, a rogue process can occupy the
GPU for arbitrary amounts of time. The occupying of the
GPU by rogue processes for arbitrary amounts of time can
prevent the effective utilization of the available system capac-
ity, and can prevent or significantly reduce the processing
progress of the system. In other cases, the ability to context
switch off the hardware is severely constrained—occurring at
very coarse granularity and only at a very limited set of points
in a program’s execution.

SUMMARY OF EMBODIMENTS

Therefore, what is needed is a method and system for
efficiently preempting one or more processes from a GPU and
context switching one or more other processes onto the GPU.

Although GPUgs, accelerated processing units (APUs), and
general purpose use of the graphics processing unit (GPGPU)
are commonly used terms in this field, the expression “accel-
erated processing device (APD)” is considered to be a broader
expression. For example, APD refers to any cooperating col-
lection of hardware and/or software that performs those func-
tions and computations associated with accelerating graphics
processing tasks, data parallel tasks, or nested data parallel
tasks in an accelerated manner with respect to resources such
as conventional CPUs, conventional GPUs, and/or combina-
tions thereof.

An embodiment of the present invention provides for APD-
initiated preemptive context-switching of processes running
on an APD.

Another embodiment includes detecting a memory excep-
tion by an APD, and preempting a process from running on
the APD based upon the detected exception.

Further features and advantages of the invention, as well as
the structure and operation of various embodiments of the
invention, are described in detail below with reference to the
accompanying drawings. It is noted that the invention is not
limited to the specific embodiments described herein. Such
embodiments are presented herein for illustrative purposes
only. Additional embodiments will be apparent to persons
skilled in the relevant art(s) based on the teachings contained
herein.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

The accompanying drawings, which are incorporated
herein and form part of the specification, illustrate the present
invention and, together with the description, further serve to
explain the principles of the invention and to enable a person
skilled in the pertinent art to make and use the invention.
Various embodiments of the present invention are described
below with reference to the drawings, wherein like reference
numerals are used to refer to like elements throughout.

FIG. 1A is an illustrative block diagram of a processing
system, in accordance with embodiments of the present
invention.

FIG. 1B is an illustrative block diagram illustration of the
APD illustrated in FIG. 1A.

FIG. 2 is a flowchart illustrating a method for APD context
switching, according to an embodiment of the present inven-
tion.

FIG. 3 is a flowchart illustrating a method for detecting a
page fault/memory exception, according to an embodiment of
the present invention.



US 9,299,121 B2

3

FIG. 4 is a flowchart illustrating a method for the APD to
notify the operating system of a page fault, according to an
embodiment of the present invention.

FIG. 5 is a flowchart illustrating a method for determining
if the APD should be context switched, according to an
embodiment of the present invention.

The features and advantages of the present invention will
become more apparent from the detailed description set forth
below when taken in conjunction with the drawings, in which
like reference characters identify corresponding elements
throughout. In the drawings, like reference numbers gener-
ally indicate identical, functionally and/or structurally similar
elements. The drawing in which an element first appears is
indicated by the leftmost digit(s) in the corresponding refer-
ence number.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

In the detailed description that follows, references to “one
embodiment,” “an embodiment,” “an example embodiment,”
etc., indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular fea-
ture, structure, or characteristic. Moreover, such phrases are
not necessarily referring to the same embodiment. Further,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to affect
such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described.

The term “embodiments of the invention” does not require
that all embodiments of the invention include the discussed
feature, advantage or mode of operation. Alternate embodi-
ments may be devised without departing from the scope of the
invention, and well-known elements of the invention may not
be described in detail or may be omitted so as not to obscure
the relevant details of the invention. In addition, the terminol-
ogy used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the
invention. For example, as used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises,” “comprising,”
“includes” and/or “including,” when used herein, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.

FIG. 1A is an exemplary illustration of a unified computing
system 100 including two processors, a CPU 102 and an APD
104. CPU 102 can include one or more single or multi core
CPUs. In one embodiment of the present invention, the sys-
tem 100 is formed on a single silicon die or package, com-
bining CPU 102 and APD 104 to provide a unified program-
ming and execution environment. This environment enables
the APD 104 to be used as fluidly as the CPU 102 for some
programming tasks. However, it is not an absolute require-
ment of this invention that the CPU 102 and APD 104 be
formed on a single silicon die. In some embodiments, it is
possible for them to be formed separately and mounted on the
same or different substrates.

In one example, system 100 also includes a memory 106,
an operating system (OS) 108, and a communication infra-
structure 109. The OS 108 and the communication infrastruc-
ture 109 are discussed in greater detail below.

29 <

5

10

15

20

25

30

35

40

45

50

55

60

65

4

The system 100 also includes a kernel mode driver (KMD)
110, a software scheduler (SWS) 112, and a memory man-
agement unit 116, such as input/output memory management
unit IOMMU). Components of system 100 can be imple-
mented as hardware, firmware, software, or any combination
thereof. A person of ordinary skill in the art will appreciate
that system 100 may include one or more software, hardware,
and firmware components in addition to, or different from,
that shown in the embodiment shown in FIG. 1A.

In one example, a driver, such as KMD 110, typically
communicates with a device through a computer bus or com-
munications subsystem to which the hardware connects.
When a calling program invokes a routine in the driver, the
driver issues commands to the device. Once the device sends
data back to the driver, the driver may invoke routines in the
original calling program. In one example, drivers are hard-
ware-dependent and operating-system-specific. They usually
provide the interrupt handling required for any necessary
asynchronous time-dependent hardware interface. Device
drivers, particularly on modern Microsoft Windows® plat-
forms, can run in kernel-mode (Ring 0) or in user-mode (Ring
3.

A benefit of running a driver in user mode is improved
stability, since a poorly written user mode device driver can-
not crash the system by overwriting kernel memory. On the
other hand, user/kernel-mode transitions usually impose a
considerable performance overhead, thereby prohibiting user
mode-drivers for low latency and high throughput require-
ments. Kernel space can be accessed by user modules only
through the use of system calls. End user programs like the
UNIX shell or other GUI based applications are part of the
user space. These applications interact with hardware through
kernel supported functions.

CPU 102 can include (not shown) one or more of a control
processor, field programmable gate array (FPGA), applica-
tion specific integrated circuit (ASIC), or digital signal pro-
cessor (DSP). CPU 102, for example, executes the control
logic, including the OS 108, KMD 110, SWS 112, and appli-
cations 111, that control the operation of computing system
100. In this illustrative embodiment, CPU 102, according to
one embodiment, initiates and controls the execution of appli-
cations 111 by, for example, distributing the processing asso-
ciated with that application across the CPU 102 and other
processing resources, such as the APD 104.

APD 104, among other things, executes instructions and
programs for selected functions, such as graphics operations
and other operations that may be, for example, particularly
suited for parallel processing. In general, APD 104 can be
frequently used for executing graphics pipeline operations,
such as pixel operations, geometric computations, and ren-
dering an image to a display. In various embodiments of the
present invention, APD 104 can also execute compute pro-
cessing operations (e.g., those operations unrelated to graph-
ics such as, for example, video operations, physics simula-
tions, computational fluid dynamics, etc.), based on
commands or instructions received from CPU 102.

For example, commands can be considered as special
instructions that are not typically defined in the instruction set
architecture (ISA). A command may be executed by a special
processor such as a dispatch processor, command processor,
or network controller. On the other hand, instructions can be
considered as, for example, a single operation of a processor
within a computer architecture. In one example, when using
two sets of ISAs, some instructions are used to execute x86
programs and some instructions are used to execute kernels
on APD compute unit.



US 9,299,121 B2

5

In an illustrative embodiment, CPU 102 transmits selected
commands and/or other instructions to APD 104. These
selected instructions can include graphics instructions and
other commands amenable to parallel execution. These
selected instructions, that can also include compute process-
ing instructions, can be executed substantially independently
from CPU 102.

APD 104 can include its own compute units (not shown),
such as, but not limited to, one or more single instruction
multiple data (SIMD) processing cores. As referred to herein,
a SIMD is a pipeline, or programming model, where a kernel
is executed concurrently on multiple processing elements
each with its own data and a shared program counter. All
processing elements execute an identical set of instructions.
The use of predication enables work-items to participate or
not for each issued instruction.

In one example, each APD 104 compute unit can include
one or more scalar and/or vector floating-point units and/or
arithmetic and logic units (ALUs). The APD compute unit
can also include special purpose processing units (not
shown), such as inverse-square root units and sine/cosine
units. In one example, the APD compute units are referred to
herein collectively as shader core 122.

Having one or more SIMDs, in general, makes APD 104
ideally suited for execution of data-parallel tasks such as
those that are common in graphics processing.

Some graphics pipeline operations, such as pixel process-
ing, and other parallel computation operations, can require
that the same command stream or compute kernel be per-
formed on streams or collections of input data elements.
Respective instantiations of the same compute kernel can be
executed concurrently on multiple compute units in shader
core 122 in order to process such data elements in parallel. As
referred to herein, for example, a compute kernel is a function
containing instructions declared in a program and executed
on an APD compute unit. This function is also referred to as
a kernel, a shader, a shader program, or a program.

In one illustrative embodiment, each compute unit (e.g.,
SIMD processing core) can execute a respective instantiation
of a particular work-item to process incoming data. A work-
item is one of a collection of parallel executions of a kernel
invoked on a device by an instruction. A work-item can be
executed by one or more processing elements as part of a
work-group executing on a compute unit.

A work-item is distinguished from other executions within
the collection by its global ID and local ID. In one example,
a subset of work-items in a workgroup that execute simulta-
neously together on a single SIMD engine can be referred to
as a wavefront 136. The width of a wavefront is a character-
istic of the hardware of the compute unit (e.g., SIMD pro-
cessing engine). As referred to herein, a workgroup is a col-
lection of related work-items that execute on a single compute
unit. The work-items in the group execute the same kernel and
share local memory and work-group barriers.

In the exemplary embodiment, all wavefronts from a work-
group are processed on the same SIMD processing core.
Instructions across a wavefront are issued one at a time, and
when all work-items follow the same control flow, each work-
item executes the same program. Wavefronts can also be
referred to as warps, vectors, or threads.

An execution mask and work-item predication are used to
enable divergent control flow within a wavefront, where each
individual work-item can take a unique code path through the
kernel. Partially populated wavefronts can be processed when
a full set of work-items is not available at wavefront start time.
For example, shader core 122 can simultaneously execute a

10

15

20

25

30

40

45

50

55

60

6

predetermined number of wavefronts 136, each wavefront
136 comprising a multiple work-items.

Within the system 100, APD 104 includes its own memory,
such as graphics memory 130 (although memory 130 is not
limited to graphics only use). Graphics memory 130 provides
a local memory for use during computations in APD 104.
Individual compute units (not shown) within shader core 122
can have their own local data store (not shown). In one
embodiment, APD 104 includes access to local graphics
memory 130, as well as access to the memory 106. In another
embodiment, APD 104 can include access to dynamic ran-
dom access memory (DRAM) or other such memories (not
shown) attached directly to the APD 104 and separately from
memory 106.

In the example shown, APD 104 also includes one or “n”
number of command processors (CPs) 124. CP 124 controls
the processing within APD 104. CP 124 also retrieves instruc-
tions to be executed from command buffers 125 in memory
106 and coordinates the execution of those instructions on
APD 104.

In one example, CPU 102 inputs instructions based on
applications 111 into appropriate command buffers 125. As
referred to herein, an application is the combination of the
program parts that will execute on the compute units within
the CPU and APD.

A plurality of command buffers 125 can be maintained
with each process scheduled for execution on the APD 104.

CP 124 can be implemented in hardware, firmware, or
software, or a combination thereof. In one embodiment, CP
124 is implemented as a reduced instruction set computer
(RISC) engine with microcode for implementing logic
including scheduling logic.

APD 104 also includes one or “n” number of dispatch
controllers (DCs) 126. In the present application, the term
dispatch refers to a instruction executed by a dispatch con-
troller that uses the context state to initiate the start of the
execution of a kernel for a set of work groups on a set of
compute units. DC 126 includes logic to initiate workgroups
in the shader core 122. In some embodiments, DC 126 can be
implemented as part of CP 124.

System 100 also includes a hardware scheduler (HWS) 128
for selecting a process from a run list 150 for execution on
APD 104. HWS 128 can select processes from run list 150
using round robin methodology, priority level, or based on
other scheduling policies. The priority level, for example, can
be dynamically determined. HWS 128 can also include func-
tionality to manage the run list 150, for example, by adding
new processes and by deleting existing processes from run-
list 150. The run list management logic of HWS 128 is some-
times referred to as a run list controller (RLC).

In various embodiments of the present invention, when
HWS 128 initiates the execution of a process from RLC 150,
CP 124 begins retrieving and executing instructions from the
corresponding command bufter 125. In some instances, CP
124 can generate one or more instructions to be executed
within APD 104, which correspond with instructions received
from CPU 102. In one embodiment, CP 124, together with
other components, implements a prioritizing and scheduling
of instructions on APD 104 in a manner that improves or
maximizes the utilization of the resources of APD 104 and/or
system 100.

APD 104 can have access to, or may include, an interrupt
generator 146. Interrupt generator 146 can be configured by
APD 104 to interrupt the OS 108 when interrupt events, such
as page faults, are encountered by APD 104. For example,
APD 104 can rely on interrupt generation logic within
IOMMU 116 to create the page fault interrupts noted above.



US 9,299,121 B2

7

APD 104 can also include preemption and context switch
logic 120 for preempting a process currently running within
shader core 122. Context switch logic 120, for example,
includes functionality to stop the process and save its current
state (e.g., shader core 122 state, and CP 124 state).

As referred to herein, the term state can include an initial
state, an intermediate state, and/to a final state. An initial state
is a starting point for a machine to process an input data set
according to a programming in order to create an output set of
data. There is an intermediate state, for example, that needs to
be stored at several points to enable the processing to make
forward progress. This intermediate state is sometimes stored
to allow a continuation of execution at a later time when
interrupted by some other process. There is also final state that
can be recorded as part of the output data set

Preemption and context switch logic 120 can also include
logic to context switch another process into the APD 104. The
functionality to context switch another process into running
on the APD 104 may include instantiating the process, for
example, through the CP 124 and DC 126 to run on APD 104,
restoring any previously saved state for that process, and
starting its execution.

Memory 106 can include non-persistent memory such as
DRAM (not shown). Memory 106 can store, e.g., processing
logic instructions, constant values, and variable values during
execution of portions of applications or other processing
logic. For example, in one embodiment, parts of control logic
to perform one or more operations on CPU 102 can reside
within memory 106 during execution of the respective por-
tions of the operation by CPU 102.

During execution, respective applications, OS functions,
processing logic instructions, and system software can reside
in memory 106. Control logic instructions fundamental to OS
108 will generally reside in memory 106 during execution.
Other software instructions, including, for example, kernel
mode driver 110 and software scheduler 112 can also reside in
memory 106 during execution of system 100.

In this example, memory 106 includes command buffers
125 that are used by CPU 102 to send instructions to APD
104. Memory 106 also contains process lists and process
information (e.g., active list 152 and process control blocks
154). These lists, as well as the information, are used by
scheduling software executing on CPU 102 to communicate
scheduling information to APD 104 and/or related scheduling
hardware. Access to memory 106 can be managed by a
memory controller 140, which is coupled to memory 106. For
example, requests from CPU 102, or from other devices, for
reading from or for writing to memory 106 are managed by
the memory controller 140.

Referring back to other aspects of system 100, IOMMU
116 is a multi-context memory management unit.

Asused herein, context can be considered the environment
within which the kernels execute and the domain in which
synchronization and memory management is defined. The
context can include a set of devices, the memory accessible to
those devices, the corresponding memory properties and one
or more command-queues used to schedule execution of a
kernel(s) or operations on memory objects. On the other hand,
process can be considered the execution of a program for an
application that runs on a computer. The OS can create data
records and virtual memory address spaces for the program to
execute. The memory and current state of the execution of the
program can be called a process. The OS may schedule tasks
for the process to operate on the memory from an initial to
final state.

Referring back to the example shown in FIG. 1A, IOMMU
116 includes logic to perform virtual to physical address

10

15

20

25

30

35

40

45

50

55

60

65

8

translation for memory page access for devices including
APD 104. IOMMU 116 may also include logic to generate
interrupts, for example, when a page access by a device such
as APD 104 results in a page fault. IOMMU 116 may also
include, or have access to, a translation lookaside buffer
(TLLB) 118. TLB 118, as an example, can be implemented in
a content addressable memory (CAM) to accelerate transla-
tion of logical (i.e., virtual) memory addresses to physical
memory addresses for requests made by APD 104 for data in
memory 106.

In the example shown, communication infrastructure 109
interconnects the components of system 100 as needed. Com-
munication infrastructure 109 can include (not shown) one or
more of a peripheral component interconnect (PCI) bus,
extended PCI (PCI-E) bus, advanced microcontroller bus
architecture (AMBA) bus, accelerated graphics port (AGP),
or other such communication infrastructure. Communica-
tions infrastructure 109 can also include an Ethernet, or simi-
lar network, or any suitable physical communications infra-
structure that satisfies an application’s data transfer rate
requirements. Communication infrastructure 109 includes
the functionality to interconnect components including com-
ponents of computing system 100.

In this example, OS 108 includes functionality to manage
the hardware components of system 100 and to provide com-
mon services. In various embodiments, OS 108 can execute
on CPU 102 and provide common services. These common
services can include, for example, scheduling applications for
execution within CPU 102, fault management, interrupt ser-
vice, as well as processing the input and output of other
applications.

In some embodiments, based on interrupts generated by an
interrupt controller, such as interrupt controller 148, OS 108
invokes an appropriate interrupt handling routine. For
example, upon detecting a page fault interrupt, OS 108 may
invoke an interrupt handler to initiate loading of the relevant
page into memory 106 and to update corresponding page
tables.

OS 108 may also include functionality to protect system
100 by ensuring that access to hardware components is medi-
ated through OS managed kernel functionality. In effect, OS
108 ensures that applications, such as applications 111, run
on CPU 102 in user space. OS 108 also ensures that applica-
tions 111 invoke kernel functionality provided by the OS to
access hardware and/or input/output functionality.

According to an embodiment of the present invention, the
operating system includes an OS memory manager 153. OS
memory manager 153 can include functionality to manage
memory objects such as, but not limited to, page tables 157
and page event queues 156. Page tables 157 can be tables that
indicate the location of pages currently loaded in memory
106. Page event queue 156 can be a queue in which page
related events, such as page fault events, are enqueued by
other devices, such as IOMMU 116, in order to communicate
page related information to the OS. Exception statistics may
be maintained in by a module 159. One or more registers 132
in the APD may be used to maintain exception statistics.

By way of example, applications 111 include various pro-
grams or instructions to perform user computations that are
also executed on CPU 102. The unification concepts can
allow CPU 102 can seamlessly send selected instructions for
processing on the APD 104.

In one example, KMD 110 implements an application pro-
gram interface (API) through which CPU 102, or applications
executing on CPU 102 or other logic, can invoke APD 104
functionality. For example, KMD 110 can enqueue instruc-
tions from CPU 102 to command buffers 125 from which



US 9,299,121 B2

9

APD 104 will subsequently retrieve the instructions. Addi-
tionally, KMD 110 can, together with SWS 112, perform
scheduling of processes to be executed on APD 104. SWS
112, for example, can include logic to maintain a prioritized
list of processes to be executed on the APD.

In other embodiments of the present invention, applica-
tions executing on CPU 102 can entirely bypass KMD 110
when enqueuing instructions.

In some embodiments, SWS 112 maintains an active list
152 in memory 106 of processes to be executed on APD 104.
SWS 112 also selects a subset of the processes in active list
152 to be managed by HWS 128 in the hardware. Information
relevant for running each process on APD 104 is communi-
cated from CPU 102 to APD 104 through process control
blocks (PCB) 154.

Processing logic for applications, OS, and system software
can include commands and/or other instructions specified in
a programming language such as C and/or in a hardware
description language such as Verilog, RTL, or netlists, to
enable ultimately configuring a manufacturing process
through the generation of maskworks/photomasks to gener-
ate a hardware device embodying aspects of the invention
described herein.

A person of skill in the art will understand, upon reading
this description, that computing system 100 can include more
or fewer components than shown in FIG. 1A. For example,
computing system 100 can include one or more input inter-
faces, non-volatile storage, one or more output interfaces,
network interfaces, and one or more displays or display inter-
faces.

FIG. 1B is an embodiment showing a more detailed illus-
tration of APD 104 shown in FIG. 1A. InFIG. 1B, CP 124 can
include CP pipelines 124a, 1245, and 124c¢. CP 124 can be
configured to process the command lists that are provided as
inputs from command buffers 125, shown in FIG. 1A. In the
exemplary operation of FIG. 1B, CP input 0 (124a) is respon-
sible for driving instructions into a graphics pipeline 162. CP
inputs 1 and 2 (1245 and 124c¢) forward instructions to a
compute pipeline 160. Also provided is a controller mecha-
nism 166 for controlling operation of HWS 128.

In FIG. 1B, graphics pipeline 162 can include a set of
blocks, referred to herein as ordered pipeline 164. As an
example, ordered pipeline 164 includes a vertex group trans-
lator (VGT) 164a, a primitive assembler (PA) 1645, a scan
converter (SC) 164¢, and a shader-export, render-back unit
(SX/RB) 176. Each block within ordered pipeline 164 may
represent a different stage of graphics processing within
graphics pipeline 162. Ordered pipeline 164 can be a fixed
function hardware pipeline. Other implementations can be
used that would also be within the spirit and scope of the
present invention.

Although only a small amount of data may be provided as
an input to graphics pipeline 162, this data will be amplified
by the time it is provided as an output from graphics pipeline
162. Graphics pipeline 162 also includes DC 166 for counting
through ranges within work-item groups received from CP
pipeline 124a. Compute work submitted through DC 166 is
semi-synchronous with graphics pipeline 162.

Compute pipeline 160 includes shader DCs 168 and 170.
Each of'the DCs 168 and 170 is configured to count through
compute ranges within work groups received from CP pipe-
lines 124b and 124c.

The DCs 166, 168, and 170, illustrated in FIG. 1B, receive
the input ranges, break the ranges down into workgroups, and
then forward the workgroups to shader core 122.

Since graphics pipeline 162 is generally a fixed function
pipeline, it is difficult to save and restore its state, and as a

15

25

30

40

45

55

65

10

result, the graphics pipeline 162 is difficult to context switch.
Therefore, in most cases context switching, as discussed
herein, does not pertain to context switching among graphics
processes. An exception is for graphics work in shader core
122, which can be context switched.

After the processing of work within graphics pipeline 162
has been completed, the completed work is processed through
a render back unit 176, which does depth and color calcula-
tions, and then writes its final results to memory 130.

Shader core 122 can be shared by graphics pipeline 162 and
compute pipeline 160. Shader core 122 can be a general
processor configured to run wavefronts.

In one example, all work within compute pipeline 160 is
processed within shader core 122. Shader core 122 runs pro-
grammable software code and includes various forms of data,
such as state data.

FIG. 2 illustrates a flowchart of a method 200 for APD
context switching, according to an embodiment of the present
invention. For example, method 200 may run on system 100
shown in FIGS. 1A and 1B. With method 200, an APD can
detect a memory exception, e.g., a page fault, and is able to
initiate and implement a context switch of processes initiated.
The method 200 may not occur in the order shown, or require
all of the steps.

In step 202, the APD runs a first process. Running of a
process can include the command processor of the APD
selecting the process from a run list of processes and running
the process on the appropriate processing pipeline. Graphics
processing utilizes the graphics pipeline of the APD, and the
compute pipeline utilizes the compute pipeline. Both types of
processes can utilize a shader core of the APD for processing,
e.g., as discussed above.

In step 204, the first process running on the APD requests
data. According to an embodiment, the request from the first
process running on the APD is intercepted by, or directed to,
a memory management unit. The memory management unit
can be an IOMMU communicatively coupled to the APD,
e.g., as discussed above with regards to system 100. The
IOMMU may be incorporated in the APD, may be incorpo-
rated in another memory management unit, such as a memory
controller, or may be implemented separately. The IOMMU
can include the functionality to translate between the virtual
memory address space as seen by the APD and the system
memory physical address space.

In step 206, the IOMMU receives the request for data from
the APD and attempts to perform the translation of the
requested data from the APD’s virtual address space to the
physical address space. The IOMMU then attempts to retrieve
the data from memory based upon the determined physical
address of the data. According to an embodiment, the
IOMMU attempts to retrieve the requested data from system
memory, such as system memory 106.

By way of example, if the requested data is not in system
memory, a memory exception or page fault is triggered.
According to an embodiment, the page fault can be triggered
by the IOMMU or other hardware or software component
associated with the IOMMU access to memory. A page fault,
as used herein, indicates that a requested memory object, such
as a page of in-memory data, does not exist in physical
memory that is accessible to the requesting entity.

A page fault can be triggered, for example, if an entry
corresponding to the virtual address is not present in the page
table. A page fault can also be triggered for other reasons,
such as when a page table entry for the requested virtual
address exists but the corresponding page is not accessible to
the requesting process. For example, a page may not be acces-
sible to the requesting process due to synchronization or



US 9,299,121 B2

11

mapping issues between the page table accessible to the
IOMMU and system memory, due to memory protection
errors such as when the requesting device or process is not
permitted to access the area of memory in which the requested
address is present, and the like.

According to an embodiment, upon receiving from the
APD a request for data, the IOMMU accesses a TLB with the
request for data. The TLB can be implemented in the
IOMMU, the APD, or separately. The TLB is a cache, typi-
cally implemented in a CAM, which performs translation
between the system memory physical address space and a
virtual address space in a more efficient manner than by using
page table lookup. According to an embodiment, a lookup is
performed in the TLB using a virtual address as seen by the
process executing on the APD. If the TLB currently has an
entry corresponding to that virtual address, then the corre-
sponding physical memory address is returned to the
IOMMU. The IOMMU can then attempt to retrieve the cor-
responding page from the memory.

If'the TLB presently does not have an entry corresponding
to the virtual address, then a TLB miss occurs. Upon a TLB
miss, the IOMMU may lookup the requested virtual address
in the page table. The process of the IOMMU looking up the
page table for a virtual address is sometimes referred to as a
page table walk. The page table walk, in general, is more time
consuming than looking up that address using a TLB.

In step 208, the OS is notified of the page fault. According
to an embodiment, the OS is notified by an interrupt generated
by the IOMMU. The IOMMU may generate the interrupt
upon detecting that the requested virtual address does not
exist in the TLB and in the page table accessible to the
IOMMU. According to another embodiment, the interrupt
can be generated by the IOMMU upon receiving a signal from
the APD requesting the generation of the interrupt.

In step 210, the IOMMU notifies the APD that the OS was
notified of the page fault. According to various embodiments,
IOMMU can generate the notification to the APD immedi-
ately upon generating an interrupt to the OS indicating the
page fault, after confirmation by the OS that it has initiated
recovery for the page faulted data, or at anytime in between.

In step 212, one or more statistics related to memory-
exceptions, such as page faults, caused by memory accesses
by processes running on the APD are updated. The memory-
exception statistics can be maintained by, and/or be acces-
sible to the APD. Exemplary memory-exception related sta-
tistics can include list of outstanding page faults, number of
TLB misses, number of page faults, TLB miss and page fault
statistics for selected processes, and page fault recovery times
(e.g., time between page fault and the corresponding page
being made available in memory). The statistics can, for
example, be maintained in one or more registers 132 acces-
sible to the APD.

Instep 214, the APD determines if there should be a context
switch or a stall in response to the detected page fault. In the
embodiment, the CP, upon receiving the notification from the
IOMMU that the OS was notified of the page fault, can invoke
logic to determine if, based on the detected page fault, a
context switch or stall should be implemented in the APD.
The APD functionality that determines if a context switch
should be attempted when a page fault is detected can be
implemented as a preemption and context switch logic.

In embodiments of the present invention, the decision to
context switch or stall is based upon a metric that may be
heuristically determined based upon information available to
the APD regarding page faults and/or other exceptions. The
APD may or may not have access to page fault statistics
maintained by the OS.

10

15

20

25

30

35

40

45

50

55

60

65

12

In another embodiment, the APD determines to initiate a
context switch based upon one or more statistics maintained
by the APD. For example, the APD may determine that, based
on statistics available to it, a process currently running on the
APD has caused more page faults than a predetermined
threshold, and therefore a context switch is warranted. A
discussion below, in relation to FIG. 5, provides more detail
regarding whether to context switch or stall based upon heu-
ristically determined metrics and page fault statistics acces-
sible to the APD.

If, in step 214, it is determined that no context switch is
required then a stall is performed at step 216. In step 216 the
APD may not take any further action regarding the currently
running process for at least the expiration of a predetermined
time interval or being triggered to take such action.

In one example, the APD can reconsider the context switch
decision 214 at the expiration of the predetermined time
interval, or upon the receipt of a message from the IOMMU
asserting that the pending page fault has been resolved. The
pending page fault may be resolved during a stall, for
example, when the OS loads or reloads the corresponding
page into system memory and notifies the IOMMU that the
page is now available. In this example, the APD, for a prede-
termined time interval, can continue to poll the IOMMU for
the resolution of the page fault. In another embodiment, the
IOMMU can itself notify the APD when the page fault has
been resolved by the OS.

If, in step 214, it is determined that a context switch is to be
initiated, then in step 218, the APD initiates the preemption of
the current process from the APD.

In step 220, the APD can initiate the running of a second
process in the APD. The initiation of the preemption of an
APD process and the initiation of the context switch can be
performed by, for example, the APD, or more specifically, the
preemption and context switch logic, HWS and/or by the
KMD and SWS when triggered by the APD. FIG. 5 provides
more detail regarding APD-initiated preemption of APD pro-
cesses and context switching.

FIG. 3 is a flowchart illustrating an exemplary method 206
for detection of a memory exception or page fault, according
to an embodiment of the present invention. For example,
method 206 may run on system 100 in FIGS. 1A and 1B.
According to an embodiment, steps 302-308 may be used in
performing the functionality of step 206 discussed above. The
method 206 may not occur in the order shown, or require all
of the steps.

In step 302, the IOMMU receives a request for data from
the APD. The request can include the virtual address of a
single data element or a block of data.

In step 304, the IOMMU initiates a TLB lookup for the
requested data. The TLB lookup can be performed using the
virtual address provided by the APD, or a virtual address
derived based upon the received virtual address. For example,
the IOMMU can derive an address of a block of data based
upon the address provided by the APD.

The TLB lookup, if successtul, results in the TLB returning
the physical address corresponding to the virtual address on
which the lookup was based.

If the TLB lookup is not successful (i.e., TLB miss), an
indication of the miss is returned to the IOMMU and/or APD.
Accordingly, the IOMMU and/or APD, upon receiving the
TLB miss indication, can choose to initiate a retry sequence
of performing the TLB lookup. For example, the retry
sequence may involve continually retrying the TLB lookup at
predetermined intervals.

In step 306, if a TLB miss resulted in step 304, the APD is
notified of a page fault. In one example, the IOMMU receives



US 9,299,121 B2

13

the TLM miss indication and initiates the page table walk to
locate the address in the page tables. In another embodiment,
the APD is notified of the miss, for example, by the IOMMU
which initially receives the TLB request miss notification, or
by receiving the miss notification directly in the APD from the
TLB. The APD may then request the [IOMMU to translate the
address and/or retrieve the data corresponding to the
requested address using the page tables. In the example, the
APD can transmit an address translation service (ATS)
Request to the IOMMU to initiate the page walk for the
requested virtual address.

If an entry corresponding to the virtual address is located in
the page table, then the corresponding request for the data can
be sent to memory to retrieve data as appropriate. If no entry
corresponding to the requested virtual address is located in
the page table, then the IOMMU signals a page fault to the
APD. According to an embodiment, the APD is notified of the
page fault using an ATS response.

In step 308, the APD requests fault handling for the page
fault from the OS. According to an embodiment, the APD
makes the request through the IOMMU. The fault handling
request to the OS can be generated by an interrupt and/or
message that the APD exchanges with the IOMMU.

FIG. 4 illustrates a flowchart of an exemplary method 208
for notifying the OS about a page fault, according to an
embodiment of the present invention. For example, method
208 may ran on system 100 in FIGS. 1A and 1B. In the
embodiment of FIG. 4, steps 402-08 can be performed in
order to implement at least some of the functionality of step
208 described above. The method 208 may or may not occur
in the order shown, an may or may not require all of the steps.

In step 402, an interrupt, e.g., corresponding to page faults,
is generated. According to an embodiment, the interrupt is
generated by the IOMMU on behalf of the APD. According to
another embodiment, the APD can directly cause the genera-
tion of the interrupt without going through the IOMMU.

In step 404, a page fault event is enqueued in a page fault
event queue in system memory. The enqueued page fault
event can include information necessary for the OS to service
the page fault and to maintain statistics about page faults. The
page fault event includes the type of page fault, the time the
page fault is generated, virtual address upon which the page
fault was generated, the process requesting the virtual address
upon which the page fault was generated, and the identity of
the device causing the page fault.

In step 406, the OS allocates the page that caused the page
fault. The OS becomes aware of the page fault, for example,
by being notified by an interrupt service routine that traps the
interrupt generated by the IOMMU and/or APD in step 402.
Upon receiving the interrupt, the OS can retrieve the corre-
sponding page fault event from a page fault event buffer. The
page fault event provides the OS with detailed information
regarding the page fault. If the page fault is due to a page not
being in memory, the OS attempts to load the page into
memory and update the page tables correspondingly. If the
page fault is due to the page tables not being correctly updated
with information regarding pages already in memory, the OS
updates the corresponding entry in the page table.

In step 408, the OS notifies the IOMMU and/or APD that
the page was loaded. According to an embodiment, this noti-
fication is delivered using an interrupt which is trapped by the
IOMMU. The OS may, according to embodiments, issue this
notification upon the initiating or upon the completing of the
loading of the corresponding page and/or updating of the
corresponding page tables.

FIG. 51s aflowchart illustrating a method 214, according to
an embodiment of the present invention. For example,

10

15

20

25

30

35

40

45

50

55

60

65

14

method 214 includes steps 502-508 for determining if an
APD should be context switched, according to an embodi-
ment of the present invention. Steps 502-508 can be per-
formed, for example, in implementing step 210 described
above on, for example, system 100 shown in FIGS. 1A and
1B.

Step 502 initiates the APD-based context switching deter-
mination, e.g., in response to the detected page fault. For
example, step 502 can be performed upon the APD receiving
notification from the IOMMU that a page fault has occurred
orupon the APD receiving notification from the IOMMU that
the OS has been notified regarding the page fault.

In the example shown in FIG. 1A, the APD-based context
switching determination can be performed by one or more of
preemption and context switch logic 120, HWS 128, KMD
110, or SWS 112. A hardware-based logic such as HWS 128
or preemption and context switch logic 120 can be initiated to
perform steps 504-506. For example, hardware-based sched-
ulers such as 120 or 128 can make a context switch determi-
nation using a heuristic criteria based on APD maintained
statistics, and context-switch a process that is already in the
hardware-maintained ran list 150.

In another embodiment, the APD can cause KMD 110 and
SWS 112 to make the determination to context-switch based
upon the APD-maintained statistics. Software-based KMD
110 and/or SWS 112 can, for example, have access to addi-
tional statistics and also scheduling information, such as the
processes in the active list.

In step 504, the APD, or more particularly one of preemp-
tion and context switchlogic 120, HWS 128, KMD 110, SWS
112 (see FIG. 1A), accesses information regarding the page
fault and other page fault statistics that are accessible to the
APD. For example, as described above, some predetermined
statistics can be stored and maintained in registers accessible
to the APD. Exemplary memory-exception related statistics
can include list of outstanding page faults, number of TLB
misses, number of page faults, TLB miss and page fault
statistics for selected processes, and page fault recovery times
(e.g., time between page fault and the corresponding page
being made available in memory) and/or the like.

In step 506, based upon heuristic criteria and page fault
statistics maintained by the APD, a determination is made to
either initiate a preemptive context switch or to allow the
current process in the APD to stall. For example, the APD
might determine, based on statistics available to it, that a
process currently running on the APD has caused more page
faults than a predetermined threshold, and therefore a context
switch is warranted.

A heuristic determination, for example, can be based on the
oldest outstanding page fault or memory access, such as to
initiate a context switch of the oldest outstanding page fault or
memory access is older than a predetermined threshold inter-
val. A heuristic determination could also be based on the
priority of the processes in the run list. That is, if one or more
processes in the run list have a priority higher than a thresh-
old, then a determination to context switch the current process
may be made at a lower threshold of page fault occurrences
than if the run list had only lower priority processes.

The heuristic determination to context switch can also be
used to (i) remove a running process that is causing a rela-
tively high number of page faults and/or (ii) provide selected
processes (e.g., based upon a priority) the ability to make
progress in processing without being excessively delayed by
page faults due to other processes, etc.

If the APD has access to OS maintained page fault statis-
tics, such as statistics 159, then the heuristic determination



US 9,299,121 B2

15

can consider such statistics in place of, or in combination
with, statistics maintained by the APD.

In step 508, the context switch is initiated by the APD.
According to an embodiment, SWS 112 and/or KMD 110 of
FIG. 1A can trigger the sending of instructions to preempt the
current process and context switch to a second process. The
SWS can be implemented as either a part of the KMD for the
APD or as a separate module that communicates with the
APD through the KMD.

In another embodiment, the preemption of the current pro-
cess and context switching of the APD to a new process can be
performed by the APD 104, the HWS 128 or preemption and
context switch logic 120 without invoking software function-
ality of KMD 110 or SWS 112 (see FIG. 1A). For example,
preemption and context switch logic 120 can determine a
context switch is required and can cause the CP 124 to pre-
empt the currently running process. HWS 128 can, with CP
124, then context switch another process from RLC 150 to
run on the APD 104.

According to an embodiment, upon being signaled or upon
determining to initiate a context switch on the APD, the SWS
performs the scheduling of processes to run on the APD. The
SWS can maintain a list of processes from which the pro-
cesses to be run on the APD are selected. The list of runnable
processes can be maintained as a single or multi-level list. The
list of runnable processes is maintained as a two-level list. At
the higher level, the SWS enqueues the runnable processes to
an active-list, such as active list, maintained in system
memory. The active-list includes an entry for each process
that the SWS has scheduled to be run on the APD. Each entry
in the active-list can include, or can point to, information
regarding the process that may be needed for the execution of
the process on the APD.

For example, each entry in the active-list can point to a
corresponding entry in the list of process control blocks in
system memory. The process control blocks can include
information regarding, for example, process state, program
counter, and the like. The SWS can select some processes
from the active-list and enqueue them in a second level list of
runnable processes referred to herein as the run list.

According to an embodiment, the run list may include a
plurality of processes selected to be run on the APD by the
SWS. The run list can be implemented in the hardware or
firmware, and can be managed by the APD or an associated
HWS. Whereas the SWS selects the processes to be input to
the run list, the HWS can select the process to be run on the
APD from those included in the run list. The selection of the
next process to be run on the APD can be based upon a
round-robin or other selection discipline.

Upon initiating a context switch on the APD, the SWS first
signals the APD to preempt the current process, which caused
the page fault. According to an embodiment, the SWS first
signals the APD to stop executing the current process. The
SWS next signals the APD to remove the current process from
the run list, and to save the context of the current process to
system memory. The SWS may also provide an address in
system memory to which the context of the current process is
to be saved.

Stopping the current process from executing on the shader
core, removing it from the run list, and saving its context
completes the preemption of the current process from execut-
ing on APD. The SWS instructions directing the preemption
are received and acted upon by the CP to preempt the current
process from executing on the shader processor.

Having preempted the current process from executing on
the APD, the SWS selects a second process to run on the APD.
According to an embodiment, the SWS selects the second

40

45

50

55

60

65

16

process from the active-list or as a new process to be added to
the list of runnable processes. If the second process already
has stored context, for example, from a previous execution,
then the SWS signals the APD to restore the context for the
second process. The SWS can then signal the APD to add the
second process to the run list managed by the HWS. When the
HWS selects the second process to run from the run list, the
CP will dispatch the second process and restore any context
necessary for the execution of the second process on the APD.

The Summary and Abstract sections may set forth one or
more but not all exemplary embodiments of the present inven-
tion as contemplated by the inventor(s), and thus, are not
intended to limit the present invention and the appended
claims in any way.

The present invention has been described above with the
aid of functional building blocks illustrating the implemen-
tation of specified functions and relationships thereof. The
boundaries of these functional building blocks have been
arbitrarily defined herein for the convenience of the descrip-
tion. Alternate boundaries can be defined so long as the speci-
fied functions and relationships thereof are appropriately per-
formed.

The foregoing description of the specific embodiments will
so fully reveal the general nature of the invention that others
can, by applying knowledge within the skill of the art, readily
modify and/or adapt for various applications such specific
embodiments, without undue experimentation, without
departing from the general concept of the present invention.
Therefore, such adaptations and modifications are intended to
be within the meaning and range of equivalents of the dis-
closed embodiments, based on the teaching and guidance
presented herein. It is to be understood that the phraseology or
terminology herein is for the purpose of description and not of
limitation, such that the terminology or phraseology of the
present specification is to be interpreted by the skilled artisan
in light of the teachings and guidance.

The breadth and scope of the present invention should not
be limited by any of the above-described exemplary embodi-
ments, but should be defined only in accordance with the
following claims and their equivalents.

What is claimed is:
1. A method, comprising:
detecting by an accelerated processing device a memory
exception which is in response to a request for data;
accessing a statistic associated with memory exceptions
which occur in response to requests for data;
comparing the statistic with a threshold;
determining whether a process should be context switched
based upon the comparison;
on a condition that it is determined that the process
should be context switched, preempting the process
from running on the accelerated processing device
and context switching the process; and
on a condition that it is determined that the process
should not be context switched, stalling the process.
2. The method of claim 1, wherein the preempting of the
process comprises preempting of the process from running on
an accelerated processor portion of the accelerated process-
ing device.
3. The method of claim 1, further comprising:
requesting, by an input output memory management unit
coupled to the accelerated processing device, data from
the memory;
determining, by the accelerated processing device,
whether the data is absent from an accessible area of the
memory;



US 9,299,121 B2

17

receiving, at the accelerated processing device, notification

of the absence; and

generating an interrupt associated with the absence.

4. The method of claim 3, further comprising:

queuing an event indicating the exception in the memory,

wherein the queued event is accessible by an operating
system (OS).

5. The method of claim 4, further comprising:

requesting, by the accelerated processing device, fault han-

dling associated with the exception from the input out-
put memory management device.

6. The method of claim 5, further comprising: receiving a
signal indicating a status regarding the queued event from the
OS.

7. The method of claim 3, wherein the determining whether
the data is absent comprises:

signaling to a driver associated with the accelerated pro-

cessing device regarding the absence; and

determining by the kernel mode driver whether to preempt

or stall the process.

8. The method of claim 1, further comprising:

determining a type of the exception;

wherein determining whether the process should be con-

text switched is based upon the determined type.

9. The method of claim 1,

wherein the memory exception is caused by a process;

wherein the statistic comprises a number of memory

exceptions caused by the process; and

wherein determining whether the process should be con-

text switched is based upon whether the number of
memory exceptions caused by the process exceeds the
threshold.

10. The method of claim 1, further comprising:

accessing statistics associated with exceptions;

determining a metric related to a type of the exception

based upon the accessed statistics; and

wherein determining whether the process should be con-

text switched is based on the determined metric.

11. The method of claim 10, wherein the statistics include
a performance statistic of a translation look-ahead buffer.

12. A system comprising:

at least one accelerated processing device comprising

circuitry configured to detect a memory exception which is

in response to a request for data;

circuitry configured to access a statistic associated with

memory exceptions in response to requests for data;
circuitry configured to compare the statistic with a thresh-
old;

circuitry configured to determine whether a process should

be context switched based upon the comparison;

context switching circuitry configured to, on a condition
that it is determined that the process should be context
switched, preempt the process from running on the at
least one accelerated processing device and context
switch the process; and

the context switching circuitry further configured to, on
a condition that it is determined that the process
should not be context switched, stall the process.

13. The system of claim 12, wherein the preempting of the
process comprises preempting of the process from running on
an accelerated processor portion of the at least one acceler-
ated processing device.

14. The system of claim 12,

wherein the memory exception is caused by a process;

wherein the statistic comprises a number of memory

exceptions caused by the process; and

10

15

20

25

30

35

40

45

50

55

60

18

wherein determining whether to context switch the process
is based upon whether the number of memory excep-
tions caused by the process exceeds the threshold.

15. The system of claim 12, further comprising:

an input output memory management device comprising:
circuitry configured to receive a request for data from the

memory;
circuitry configured to determine that the data is absent
from an accessible area of the memory; and
circuitry configured to generate an interrupt associated
with the absence.

16. The system of claim 15, further comprising:

a translation lookahead buffer coupled to the input output
memory management device and configured to deter-
mine if the requested data is present in the memory.

17. The system of claim 16, further comprising:

at least one central processing device configured to run one
or more processes to initiate the process in the at least
one accelerated processing device.

18. The system of claim 17, further comprising:

a kernel mode driver executing on the central processing
device and configured to receive notification from the at
least one accelerated processing device regarding the
absence, and to determine whether to preempt or stall the
process.

19. A non-transitory computer readable medium storing
instructions, wherein the instructions, if executed by a pro-
cessing device, cause the processing device to:

detect a memory exception which is in response to a
request for data;

access a statistic associated with memory exceptions
which occur in response to requests for data;

compare the statistic with a threshold;

determine whether the process should be context switched
based upon the comparison;

on a condition that it is determined that the process should
be context switched, preempt the process from running
on the processing device and context switch the process;
and

on a condition that it is determined that the process should
not be context switched, stall the process.

20. The non-transitory computer readable medium of claim
19, wherein the instructions, if executed by the processing
device, further cause the processing device to:

request, by an input output memory management device,
data from the memory;

determine, whether the data is absent from an accessible
area of the memory;

receive notification of the absence; and

generate an interrupt associated with the absence.

21. The non-transitory computer readable medium of claim
19, wherein the instructions, if executed by the processing
device, further cause the processing device to:

determine a type of the exception; and

select to preempt or stall the process based upon the deter-
mined type.

22. The non-transitory computer readable medium of claim

21,

wherein the memory exception is caused by a process:

wherein the statistic comprises a number of memory
exceptions caused by the process; and

wherein determining whether the process should be con-
text switched is based upon whether the number of
memory exceptions caused by the process exceeds the
threshold.



